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Calculation of Required Strengths
• Analysis Requirements

Second‐Order Elastic  Analysis
• Consideration of Initial Imperfections

• Adjustments to Stiffness

Calculation of Available Strengths
• Chapters D though K without further 
consideration of overall structure stability
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Elastic Flexural Rigidity
• EIeff – used to determine the axial compressive strength 
of columns

• EIelastic – used in a 1st or 2nd order static, dynamic, or 
eigenvalue analysis
– in conjunction with Direct Analyses stiffness reductions to 
perform strength checks

– to compute story drifts used in interstory drift checks
– to compute fundamental periods and mode shapes 
(including for response spectrum analysis)

– as the elastic component of a concentrated plasticity 
beam‐column element

• EIDA – used in the Direct Analysis method

For Structural Steel: EIeff = EIelastic = EsIs



EIeff for Composite Column
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Benchmark Frame Schematic
L = λoe1g π

EIgross
Pno,gross

kθ,top =  
6 EIgross
Gg,top L

kθ,bot =  
6 EIgross
Gg,bot L

γP P P

H
βM

M

EIelasticEIelastic

x

EIgross = EsIs + EsIsr + EcIc
Pno,gross = AsFy + AsrFysr + Acf′c

Initial Imperfections:
Out-of-plumbness Δo = L/500
Out-of-straightness δo = L/1000 (sinusoidal)



Parametric Variations of the Benchmark Frames
Frame Slenderness End Restraint

Leaning 
Column Load 

Ratio

End Moment 
Ratio

Number of 
Frames

Sidesway 
Uninhibited

4 values
λoe1g = {0.22, 
0.45, 0.67, 

0.90}

4 value pairs
(Table Below)

4 values
γ = {0, 1, 2, 3} n/a 64

(= 4 × 4 × 4)

Sidesway 
Inhibited

4 values
λoe1g = {0.45, 
0.90, 1.35, 

1.90}

n/a n/a

5 values 
β = {–1.0, 

–0.5, 0.0, 0.5, 
1.0}

20
(= 4 × 5)

Pair Gg,top Gg,bot

A 0 0
B 1 or 3* 1 or 3*
C 0 ∞
D 1 or 3* ∞

*3 when γ = 0; 1 otherwise
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Selected Sections
Index D t ρs
A 7 0.500 24.82%

B 10 0.500 17.70%

C 12.75 0.375 10.65%

D 16 0.250 5.72%

E 24 0.125 1.93%

Index H B t ρs
A 6 6 1/2 27.63%

B 9 9 1/2 19.06%

C 8 8 1/4 11.13%

D 9 9 1/8 5.05%

E 14 14 1/8 3.27%

CCFT RCFT

Index Steel Shape ρs
A W14x311 11.66%

B W14x233 8.74%

C W12x120 4.49%

D W8x31 1.16%

Index Rebar ρsr
A 20 #11 3.98%

B 12 #10 1.94%

C 4 #8 0.40%

SRC

Gross dimensions of all SRC sections = 28″ x 28″
Fy = 50 ksi; Fyr = 60 ksi; ; f′c = 4, 8, 16 ksi

Fy = 42 ksi; f′c = 4, 8, 16 ksi Fy = 46 ksi; f′c = 4, 8, 16 ksi



Analysis of the Benchmark Frames
• Second‐Order Elastic Analysis

– Closed form solution of the governing differential 
equation using the appropriate boundary conditions

• Fully Nonlinear Analysis
– Distributed Plasticity Mixed Beam Finite Element 
Formulation 

– Implemented in the OpenSees framework
– Extensive validation to experimental results
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Steel Material Models for SRC and CFT Members
• For SRC: Steel Shape (WF)

– Elastic‐perfectly plastic
– Lehigh residual stress pattern (fc = 0.3Fy)

• For SRC: Steel Reinforcement
– Elastic‐perfectly plastic
– No residual stress

• For CFT:  Steel Shape (HSS)
– Multi‐linear model by Abdel‐Rahman and 

Sivakumaran (1997)
– Residual stress accounted for in the shape 

of the curve
– Sections with high D/t ratios are included in 

the study, but local buckling is not modeled, 
noting that the AISC strength reductions for 
local buckling will still apply. 

from: Abdel‐Rahman and Sivakumaran 1997



Concrete Material Models for SRC and CFT Members
• Popovics Concrete Model

– Three parameters define the 
stress‐strain response

• Peak stress
– Taken as f’c or greater to 

account for confinement

• Strain at peak stress
• Initial stiffness

(corresponds to  wc = 148.1 pcf using 
the AISC formula)
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Example Results: Fully Nonlinear Applied Load and Internal Force Interaction Diagrams
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Example Results: EIelastic
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Expression for EIelastic
• Linear regression of data 
obtained in EIelastic study

4 (RCFT)elastic s s c cEI E I C E I= +

4 1.01 0.90 1 3.39 1.00
n no

M PC
M P

⎛ ⎞
= − − ≤⎜ ⎟

⎝ ⎠

from: ACI 318‐08



Axial Strength
CCFT RCFT

SRC 
(strong axis)

SRC 
(weak axis)



Axial Strength of SRC Columns
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Axial Strength of SRC Columns
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Anslijn & Janss 1974
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Roderick & Loke 1975



Direct Analysis
• From a practical standpoint it is best to 
maintain a stiffness reduction of 0.8τb

• Thus, differences between composite and 
steel are embodied in EIelastic
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Variation of the Interaction Diagram with Slenderness 
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Example Results: Fully Nonlinear and Design Interaction Diagrams
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Example Results: Normalized Interaction Diagrams



Exceptions to the 5% unconservative limit
1. Members with high effective length factors 

(e.g., an effective length factor, K, greater 
than approximately 3)
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Exceptions to the 5% unconservative limit
2. Steel dominant CCFT members where the 

axial compressive strength, Pn, is 
overpredicted by the design equations

CCFT



Exceptions to the 5% unconservative limit
3. Steel dominant weak axis SRC members 

where the flexural strength, Mn, is 
overpredicted by the design equations
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Conclusions 
• Large parametric study undertaken to assess the in‐plane 

stability behavior of steel‐concrete composite members
• This research has developed:

– New elastic flexural rigidities for elastic analysis of composite 
members

– New effective flexural rigidities for calculating the axial 
compressive strength of SRC members

– New recommendations for the construction of the interaction 
diagram for composite members. 

• The proposed beam‐column design methodology is safe 
and accurate for the vast majority of common cases of 
composite member behavior
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Confinement Model for SRC and CFT Members
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CCFT
• Confinement pressure computed as a hoop 

stress based on the tube slenderness
• Peak stress computed using Mander’s

model for symmetric states of confining 
pressure

RCFT
• Confinement assumed to have no effect on 

the peak stress

SRC
• Concrete divided into three regions:

• Cover
• Medium Confined (within the lateral 

reinforcement)
• Highly Confined (within the flanges of 

the steel shape)
• Confinement pressure computed in two 

orthogonal directions for each region
• Peak stress computed using Mander’s

model for a general triaxial state of stress
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Variation of the Second-Order Internal Force Interaction Diagram with Slenderness 
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