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Direct Analysis Method

Calculation of Required Strengths
e Analysis Requirements

Second-Order Elastic Analysis
* Consideration of Initial Imperfections

N, =0.002, 3
e Adjustments to Stiffness

EI DA — O'STb EIelastic

EADA — O'SEAeIastic
Calculation of Available Strengths

e Chapters D though K without further
consideration of overall structure stability
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Elastic Flexural Rigidity

El . — used to determine the axial compressive strength
of columns

El,,...— usedin a 15t or 2"d order static, dynamic, or

eigenvalue analysis

— in conjunction with Direct Analyses stiffness reductions to
perform strength checks

— to compute story drifts used in interstory drift checks

— to compute fundamental periods and mode shapes
(including for response spectrum analysis)

— as the elastic component of a concentrated plasticity
beam-column element

El,, — used in the Direct Analysis method

E.l

elastic — =s's

For Structural Steel: £/ = El



El 4 tor Composite Column

El, =El +05E1_+CE]l  (SRC) 0|

C, =o.1+2( A )30.3

A+ A

El, =EIl . +E]I  +C,E.I (CFT)
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Benchmark Frame Schematic
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v 6 o t
H > e <$ —
ke op = 6 Elgross
top Gyop L
El _ E/ ] L= EM
elastic elastic oelg n P
no,gross
0.bot Gg,bot L N h i L
74>_ 7@_ 79- El =EI.+EJI_+E./
M R/ gross — Tsls s'sr c’lc
Pno,gross = AsFy T Aerysr T Acfc

Initial Imperfections:

Out-of-plumbness A, = L/500
Out-of-straightness 5, = L/1000 (sinusoidal)



Parametric Variations of the
Benchmark Frames

Leaning
Slenderness | End Restraint | Column Load | Ed Moment | Number of
Ratio Ratio Frames

4 values
Sidesway Moerg = £0.22, 4 value pairs 4 values n/a 64
Uninhibited 0.45,0.67, (Table Below) v={0,1, 2, 3} (=4 x4 x4)
0.90}
4 values 5 values
Sidesway Aoe1g = {0.45, n/a n/a B={-1.0, 20
Inhibited 0.90, 1.35, —-0.5, 0.0, 0.5, (=4 x5)
1.90} 1.0}
| Pair | Ggiop | Ggoot
A 0 0
B 1or3* 1or3*
C 0 oo

D 1or3* oo
*3 when y = 0; 1 otherwise



Benchmark Frame Schematic
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Selected Sections

CCFT RCFT
M“—“ mnn—-_

A 0.500 24.82% A 6 6 27.63%

B 10 0.500 17.70% B 9 9 1/2 19.06%

C 12.75 0.375 10.65% C 8 8 1/4 11.13%

D 16 0.250 5.72% D 9 9 1/8 5.05%

E 24 0.125 1.93% E 14 14 1/8 3.27%
Fy= 42 ksi; f'. =4, 8, 16 ksi Fy= 46 ksi; f'. =4, 8, 16 ksi

SRC
index | steelshape Lo, B A

A W14x311 11.66%
20 #11 3.98%

B W14x233 8.74%
B 12 #10 1.94%

C W12x120 4.49%
C 4 #8 0.40%

D W8x31 1.16%

Gross dimensions of all SRC sections = 28" x 28"
Fy = 50 ksi; Fyr =60 ksi; ; f'. =4, 8, 16 ksi



Analysis of the Benchmark Frames

e Second-Order Elastic Analysis

— Closed form solution of the governing differential
equation using the appropriate boundary conditions

P

V””(X) + V”(X) — O

El

elastic

e Fully Nonlinear Analysis

— Distributed Plasticity Mixed Beam Finite Element
Formulation

— Implemented in the OpenSees framework
— Extensive validation to experimental results



Steel Material Models for SRC and
CFT Members

e For SRC: Steel Shape (WF)
— Elastic-perfectly plastic A
— Lehigh residual stress pattern (f, = 0.3F ) -
e For SRC: Steel Reinforcement
— Elastic-perfectly plastic
— No residual stress ,2

e For CFT: Steel Shape (HSS)

— Multi-linear model by Abdel-Rahman and Fym=0875Fy  En= 1,000 MPs
Sivakumaran (1997) >

. . Strain
— Res | d u a I St reSS a CCO u nte d fo r | n th e S h a pe FIG. 5. lIdealized Stress-Strain Relationship for Cold-Formed

Steel
of the curve

— Sections with high D/t ratios are included in
the study, but local buckling is not modeled,
noting that the AISC strength reductions for
local buckling will still apply.

3 37 333

E =203,000 MPa
Elasticunloading  p, . 100,000 MPa

FP =0.75 Fy En= 20,000 MPa

from: Abdel-Rahman and Sivakumaran 1997



Concrete Material Models for SRC
and CFT Members

e Popovics Concrete Model

— Three parameters define the 1.2

stress-strain response ~,
p q\_bo 1.0 - o B r(g/géc) —
e Peak stress 2 o8l L r—le(elel) -
, 8 cc
— Taken as f’. or greater to F 06 B
account for confinement 5 04l |
. I . n E.cl.
e Strain at peak stress = 02 r=—r == )
=z - cc
e |Initial stiffness 0 w w w w

0 1 2 3 4 5
Ec [kSl] —1802 / fc’ [ kSl] Normalized Strain (g/e'_ )

(corresponds to w, = 148.1 pcf using

the AISC f | Tksi TV /
© ormula) g, = f, [7klscl)] &, =&, [14—5[ fcc, —1}}

c




Internal Force Interaction Diagrams
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Normalized Axial Compression (P/Iﬁo)

Example Results: ET
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Expression for EI ;..

e Linear regression of data
obtained in E/

10.10.4.1 — It shall be permitted to use the following

St u d y properties for the members in the structure:

(a) Modulus of elasticity......................
(b) Moments of inertia, /
Compression members:

elastic

Columns ...
Walls—Uncracked ... -
—Cracked.....cocceeeeieeicciieri e 0.35/,
Flexural members:
Beams........... cerrereeseeeneenenses 0,351

EI — E I + C E I RCFT Flat plates and flat SlabS........cceooveveveeueeane 0.25!§
- s"s 4=c "¢ (C) Area......ooooiiiicicee. 1.0Ag

Alternatively, the moments of inertia of compression

and flexural members, I, shall be permitted 10 be

computed as follows:

elastic

Compression members:

/ A, M, P,
I= ,\n.ao»fzsAng 55 %55 1,<0875l,

u

C,=1.01- 0.90ﬂ 1- 3.39L <1.00
M P where P, and M, shall be determined from the

n no particular load combination under consideration, or
the combination of P, and M, determined in the
smallest value of /. I need not be taken less than
0.35/4.

(I0-8)

from: ACI 318-08



no

/P
n,analysis

P

I:)n,analysis/F)no,AlSC 2010

Axial Strength

1.2

no

/P
n,analysis

P

04

SRC

021 (strong axis)

I:)n,analysis/F)no,AlSC 2010

0 |
0 1 2

oe

021~ (weak axis)

0 |
0 1 2

oe



I:)n,analysis/Pno,AlSC 2010

Axial Strength of SRC Columns

El =EI +EI_+C EI.  (SRC)

eff , proposed 1, proposed

C :0.60+2—AS£O.75

1, proposed

I:)n,analysis/Pno,AlSC 2010
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Axial Strength of SRC Columns

EIeff,proposed = Es Is + Es Isr + C1, proposed Ec Ic (SRC)

Cy oronasea = 0-60+ 2A (075

1.5

Column Curve

O Anslijn & Janss 1974

Chen, Astaneh-Asl, & Moehle 1992
Han & Kim 1995

Han, Kim, & Kim 1992

Roderick & Loke 1975

0 0.5 1 1.5
A

0e,proposed




Direct Analysis

* From a practical standpoint it is best to
maintain a stiffness reduction of 0.87,
El,, =0.8¢.El

elastic

3 1.0 for P /P, <0.5
74P /P, )1-P/P,) forP. /P, >05

 Thus, differences between composite and
steel are embodied in El,.,..

El,.. =El +EIl_ +0.75C,E.I.  (SRC)

elastic

El,.. =E]l +0.75C,El.  (CFT)

elastic



Interaction Strength

P Nominal X = Pr/Pro P Nominal X = Pr/Pro
T (Pa,0) Section T (Pa,0) Section
TSl Strength TSl Strength
(Px0) < (Pa0) <

|
1
1
. (acxPa,0.905Mg) !
Nominal _ !
Beam-Column Nominal !
Strength Beam-Column I
Strength !

(0,Mg) (0, agMg) . (0,Mpg)

® >
AISC 2010 M Proposed M
1 for 1, <1 P./P, for 1, <0.5
oy =41-0.2(4, -1) forl<, <2 a. =P, /P,—(P./P,—0.2)(4,—-0.5) for0.5<4, <15

0.8 for A4, >2 0.2 for 4, >1.5



Normalized Axial Load (P/P,)

Variation of the Interaction Diagram

with Slenderness
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Example Results
Normalized Interaction Diagrams
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Exceptions to the
5% unconservative limit

1. Members with high effective length factors
(e.g., an effective length factor, K, greater
than approximately 3)
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Exceptions to the
5% unconservative limit

. Steel dominant CCFT members where the
axial compressive strength, P, , is
overpredicted by the design equations
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Exceptions to the
5% unconservative limit

3. Steel dominant weak axis SRC members

Error in M

where the flexural strength, M, is

n

overpredicted by the design equations
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Conclusions

Large parametric study undertaken to assess the in-plane
stability behavior of steel-concrete composite members

This research has developed:

— New elastic flexural rigidities for elastic analysis of composite
members

— New effective flexural rigidities for calculating the axial
compressive strength of SRC members

— New recommendations for the construction of the interaction
diagram for composite members.
The proposed beam-column design methodology is safe
and accurate for the vast majority of common cases of
composite member behavior
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Confinement Model for SRC and CFT
Members

CCFT

model for symmetric states of confining

pressure

a, =0.138-0.00174(D/t) >

20,F
I ==

RCFT

y

D/t—2

Cover

SRC

Confinement pressure computed as a hoop e Concrete divided into three regions:
stress based on the tube slenderness
Peak stress computed using Mander’s

Medium Confined (within the lateral

reinforcement)

Highly Confined (within the flanges of

the steel shape)

* Confinement pressure computed in two
orthogonal directions for each region

fee = fc'(—1-254+ 2-254\/1+ 7.94(f /1) —2.0( f./fc')) » Peak stress computed using Mander’s
model for a general triaxial state of stress

Confinement assumed to have no effect on

the peak stress

K: cC

!

c

fly,medium = I'<e/0y I:yr
flz,medium = Kepz I:yr
t?F
f i :fmeium+ —
0,75 (b, —t,, )
=1+ A7(0.1+ O'g_j X = fiy+ 1)
1+ BX 2f,

: sgngg;ggus!!&sﬁ
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Axial Strength

P | 0.658% forA, <15
P. 10.877/4% for A, >15

/Ioe:KL P,
7w \| El 4

P.=FA+F A, +0.85TA (SRC)

I:)no = Fy'AS + CZ 1:c"A\: (CFT)



Normalized Axial Load (P/P,)
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